Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Pollut ; 343: 123150, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103711

RESUMEN

Plastic and microplastics, including polyethylene (PE), polypropylene (PP), and polystyrene (PS), are major contributors to environmental pollution. However, there is a growing recognition of the need to investigate a wider range of plastic polymers to fully understand the extent and impacts of plastic pollution. This study focuses on the comprehensive characterization of true-to-life nanoplastics (T2LNPs) derived from polyethylene terephthalate (PET) and polyamide (PA) to enhance our understanding of environmental nanoplastics pollution. T2LNPs were produced through cryogenic mechanical fragmentation of everyday items made from these polymers. A solid methodological framework incorporating various characterization techniques was established. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA) were employed to study the chemical composition and confirm the absence of chemical modifications possibly occurring during fragmentation. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze the morphology of the T2LNPs. Additionally, AFM image analysis compared to dynamic light scattering (DLS) measurements provided insights into the size distribution and the stability of the T2LNP suspensions. The results revealed the heterogeneity of T2LNPs derived from PET and PA, emphasizing the importance of studying different plastic compositions to comprehensively understand nanoplastics pollution. Lastly, the distinctive characteristics and morphology of T2LNPs were translated into the realm of biological interactions, offering initial insights into the influence of these disparities on the formation of the protein corona on the surface of T2LNPs. By proposing T2LNPs as test materials and establishing a comprehensive characterization approach, this study aims to bridge the knowledge gap regarding the behavior and toxicity of nanoplastics. Furthermore, it highlights the need for a reliable and transferable analytical package for nanoplastic characterization to facilitate future studies on the environmental impact of nanoplastics.


Asunto(s)
Tereftalatos Polietilenos , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Nylons , Plásticos , Polietileno , Polímeros , Poliestirenos
2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570680

RESUMEN

Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies.

3.
Materials (Basel) ; 16(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37297187

RESUMEN

The carbonation of alkaline industrial wastes is a pressing issue that is aimed at reducing CO2 emissions while promoting a circular economy. In this study, we explored the direct aqueous carbonation of steel slag and cement kiln dust in a newly developed pressurized reactor that operated at 15 bar. The goal was to identify the optimal reaction conditions and the most promising by-products that can be reused in their carbonated form, particularly in the construction industry. We proposed a novel, synergistic strategy for managing industrial waste and reducing the use of virgin raw materials among industries located in Lombardy, Italy, specifically Bergamo-Brescia. Our initial findings are highly promising, with argon oxygen decarburization (AOD) slag and black slag (sample 3) producing the best results (70 g CO2/kg slag and 76 g CO2/kg slag, respectively) compared with the other samples. Cement kiln dust (CKD) yielded 48 g CO2/kg CKD. We showed that the high concentration of CaO in the waste facilitated carbonation, while the presence of Fe compounds in large amounts caused the material to be less soluble in water, affecting the homogeneity of the slurry.

4.
Environ Res ; 216(Pt 3): 114632, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347397

RESUMEN

The ubiquitous distribution of plastics and microplastics (MPs) and their resistance to biological and chemical decay is adversely affecting the environment. MPs are considered as emerging contaminants of concern in all the compartments, including terrestrial, aquatic, and atmospheric environments. Efficient monitoring, detection, and removal technologies require reliable methods for a qualitative and quantitative analysis of MPs, considering point-of-need testing a new evolution and a great trend at the market level. In the last years, portable spectrometers have gained popularity thanks to the excellent capability for fast and on-site measurements. Ultra-compact spectrometers coupled with chemometric tools have shown great potential in the polymer analysis, showing promising applications in the environmental field. Nevertheless, systematic studies are still required, in particular for the identification and quantification of fragments at the microscale. This study demonstrates the proof-of-concept of a Miniaturized Near-Infrared (MicroNIR) spectrometer coupled with chemometrics for the quantitative analysis of ternary mixtures of MPs. Polymers were chosen representing the three most common polymers found in the environment (polypropylene, polyethene, and polystyrene). Daily used plastic items were mechanically fragmented at laboratory scale mimicking the environmental breakdown process and creating "true-to-life" MPs for the assessment of analytical methods for MPs identification and quantification. The chemical nature of samples before and after fragmentation was checked by Raman spectroscopy. Sixty three different mixtures were prepared: 42 for the training set and 21 for the test set. Blends were investigated by the MicroNIR spectrometer, and the dataset was analysed using Principal Component Analysis (PCA) and Partial Least Square (PLS) Regression. PCA score plot showed a samples distribution consistent with their composition. Quantitative analysis by PLS showed the great capability prediction of the polymer's percentage in the mixtures, with R2 greater than 0.9 for the three analytes and a low and comparable Root-Mean Square Error. In addition, the developed model was challenged with environmental weathered materials to validate the system with real plastic pollution. The findings show the feasibility of employing a portable tool in conjunction with chemometrics to quantify the most abundant forms of MPs found in the environment.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Quimiometría , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados
5.
Environ Res ; 217: 114805, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375507

RESUMEN

The carbonation of alkaline wastes is an interesting research field that may offer opportunities for CO2 reduction. However, the literature is mainly devoted to studying different waste sequestration capabilities, with lame attention to the reliability of the data about CO2 reduction, or to the possibilities to increase the amount of absorbed CO2. In this work, for the first time, the limitation of some methods used in literature to quantify the amount of sequestered CO2 is presented, and the advantages of using suitable XRD strategies to evaluate the crystalline calcium carbonate phases are demonstrated. In addition, a zero-waste approach, aiming to stabilize the waste by coupling the use of by-products and the possibility to obtain CO2 sequestration, was considered. In particular, for the first time, the paper investigates the differences in natural and accelerated carbonation (NC and AC) mechanisms, occurring when municipal solid waste incineration (MSWI) fly ash is stabilized by using the bottom ash with the same origin, and other by-products. The stabilization mechanism was attributed to pozzolanic reactions with the formation of calcium silicate hydrates or calcium aluminate hydrate phases that can react with CO2 to produce calcium carbonate phases. The work shows that during the AC, crystalline calcium carbonate was quickly formed by the reaction of Ca(OH)2 and CaClOH with CO2. On the contrary, in NC, carbonation occurred due to reactions also with the amorphous Ca. The sequestration capability of this technology, involving the mixing of waste and by-products, is up to 165 gCO2/Kg MSWI FA, which is higher than the literature data.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Incineración , Residuos Sólidos/análisis , Dióxido de Carbono/análisis , Metales Pesados/análisis , Reproducibilidad de los Resultados , Carbonatos/análisis , Carbonatos/química , Carbonato de Calcio/química , Eliminación de Residuos/métodos , Material Particulado/química
6.
Materials (Basel) ; 15(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500023

RESUMEN

There are several recycling methods to treat discharged lithium-ion batteries, mostly based on pyrometallurgical and hydrometallurgical approaches. Some of them are promising, showing high recovery efficiency (over 90%) of strategic metals such as lithium, cobalt, and nickel. However, technological efficiency must also consider the processes sustainability in terms of environmental impact. In this study, some recycling processes of spent lithium-ion batteries were considered, and their sustainability was evaluated based on the ESCAPE "Evaluation of Sustainability of material substitution using CArbon footPrint by a simplifiEd approach" approach, which is a screening tool preliminary to the Life Cycle Assessment (LCA). The work specifically focuses on cobalt recovery comparing the sustainability of using inorganic or organic acid for the leaching of waste derived from lithium-ion batteries. Based on the possibility to compare different processes, for the first time, some considerations about technologies optimization have been done, allowing proposing strategies able to save chemicals. In addition, the energy mix of each country, to generate electricity has been considered, showing its influence on the sustainability evaluation. This allows distinguishing the countries using more low-carbon sources (nuclear and renewables) for a share of the electricity mix, where the recycling processes result more sustainable. Finally, this outcome is reflected by another indicator, the eco-cost from the virtual pollution model 99' proposed by Vogtländer, which integrates the monetary estimation of carbon footprint.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35742654

RESUMEN

In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Aerosoles , Contaminación del Aire Interior/prevención & control , COVID-19/diagnóstico , Niño , Humanos , SARS-CoV-2 , Ventilación
8.
Food Addit Contam Part B Surveill ; 15(3): 203-211, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35666702

RESUMEN

The release of chromium, nickel, and manganese from knives stainless steel produced in Italy and People's Republic of China was investigated with the aim to check their quality and compliance with Italian Ministerial Decree 21.03.73, which is the most detailed text for the hygiene regulation of packaging, containers, and tools intended for food contact. Temperature effect on metal release is investigated in 18 sets of knives. Tests are performed by simulating discontinuous contact using a 3% glacial acetic acid solution in distilled water at 50°C and 100°C. Chromium, nickel, and manganese quantification is performed by total reflection X-Ray fluorescence. Chemical composition highlights low sulphur content, and most of them belong to the American Iron and Steel Institute (AISI) 420 type A stainless steel group. Tests performed at 100°C revealed higher concentration of released metals. Only three knives tested at 100°C exceed the limit of 100 µg L-1.


Asunto(s)
Níquel , Acero Inoxidable , Alérgenos , Cromo/análisis , Contaminación de Alimentos , Humanos , Manganeso/análisis , Metales , Níquel/análisis , Acero Inoxidable/química
9.
Materials (Basel) ; 15(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35329499

RESUMEN

The COVID-19 pandemic suddenly changed the lifestyle of billions of people. Face masks became indispensable to protect from the contagion providing a significant environmental impact. The aim of this work is to propose possible solutions to decrease masks' impact on the environment. For this reason, different masks (surgical and fabric) were considered, and the CO2 emissions associated with the mask materials production were calculated. Carbon Footprint (CF) for each material composing the masks was evaluated through the database Ces Selector 2019. The software Qgis (version 2.18.20) allows us to elaborate the CO2 emissions maps for each Italian region. Finally, for surgical masks, which are often imported from abroad, the CF related to transport was considered. It results that fabric masks are a sustainable solution to prevent contagion. The total CO2 emission associated with the use of fabric masks from the beginning of the pandemic (March 2020) to December 2021 resulted in about 7 kton compared to 350 kton for surgical masks.

10.
Materials (Basel) ; 14(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771827

RESUMEN

Phosphate rocks are a critical resource for the European Union, and alternative sources to assure the future production of a new generation of fertilizers are to be assessed. In this study, a statistical approach, combined with a sustainability evaluation for the recovery of materials from waste containing phosphorus (P), is presented. This work proposes a strategy to recover P and silica (SiO2) from rice husk poultry litter ash (RHPLA). The design of experiment (DoE) method was applied to maximize the P extraction using hydrochloric acid (HCl), with the aim to minimize the contamination that can occur by leachable heavy metals present in RHPLA, such as zinc (Zn). Two independent variables, the molar concentration of the acid, and the liquid-to-solid ratio (L/S) between the acid and RHPLA, were used in the experimental design to optimize the operating parameters. The statistical analysis showed that a HCl concentration of 0.34 mol/L and an L/S ratio of 50 are the best conditions to recover P with low Zn contamination. Concerning the SiO2, its content in RHPLA is too low to consider the proposed recovery process as advantageous. However, based on our analysis, this process should be sustainable to recover SiO2 when its content in the starting materials is more than 80%.

11.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807763

RESUMEN

The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs' interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a "Sustainable Materials Partnership for SDGs" is envisaged for more suitable resource management in the future.


Asunto(s)
Materiales Biocompatibles , Desarrollo Sostenible , Fuentes Generadoras de Energía , Contaminantes Ambientales/química , Contaminantes Ambientales/aislamiento & purificación , Alimentos , Objetivos , Italia
12.
Materials (Basel) ; 13(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906837

RESUMEN

This work proposes new eco-materials for the adsorption of diclofenac (DCF). The large consumption of this nonsteroidal anti-inflammatory drug combined with the inefficiency of wastewater treatment plants (WWTPs) leads to its presence in aquatic environments as an emerging pollutant. The adsorption technique is widely used for pharmaceutical removal. Moreover, due to the large effect of commercial adsorbents, in the frame of the Azure Chemistry approach, new sustainable materials are mandatory for removal as emerging pollutants. The work proposes three adsorbents that were obtained from different stabilization methods of fly ash derived from an incinerator plant; the stabilization techniques involved the use of various industrial by-products such as bottom ash, flue gas desulphurization residues, coal fly ash, and silica fume. The best performance, although less than activated carbon, was obtained by COSMOS (COlloidal Silica Medium to Obtain Safe inert: the case of incinerator fly ash), with a removal efficacy of approximately 76% with 15 g/L of material. Several advantages are expected not only from the DCF removal but also from an economic perspective (the newly obtained adsorbents are eco-materials, so they are cheaper in comparison to conventional adsorbents) and in terms of sustainability (no toxic reagents and no heating treatment are involved). This work highlights the adsorption performance of the new eco-materials and their potential use in WWTPs.

13.
Waste Manag ; 116: 147-156, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32799096

RESUMEN

This paper reports a complete characterization of the lowest fractions of bottom ash derived from co-combustion of municipal solid waste with sewage sludge (COBA), with the aim to suggest suitable reuse strategies of this by-product. X-Ray Microanalysis is coupled with mineralogical characterization, based on X-Ray Diffraction and Rietveld refinement, to extract information about COBA crystalline and amorphous phases. The composition of different particle size fractions shows that amount of amorphous increases with the increase of fractions sizes. In particular, the finest COBA size fraction (<300 µm) shows more leachable heavy metals (i.e. Pb, and Zn) compared to the investigated fraction with the highest sizes (1400 µm). On the basis of their composition, lowest particle size fractions show a better hydraulic behavior compared to bottom ash obtained from incineration of only municipal solid waste, suggesting possible attractive COBA applications, as for example, Portland cement substitution. In addition, COBA with size fractions in the range of 1000-1400 µm are proposed to be used to produce glass and ceramic. Finally, due to its high amount of reactive amorphous phase (about 73% for fraction size of 1400 µm) COBA is used, in combination with other by-products (coal fly ash and flue gas desulphurization residues), to stabilize municipal solid waste incinerator fly ash produced at the same incinerator plant, following the azure chemistry principle of use a waste to stabilize another waste.


Asunto(s)
Ceniza del Carbón , Metales Pesados , Incineración , Aguas del Alcantarillado , Residuos Sólidos/análisis
14.
Microsc Res Tech ; 83(8): 853-864, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32227682

RESUMEN

Calcination and decalcification are basic procedures useful to a morphological approach of a biological, composite material like cortical bone. The study was carried out on a whole human femur conserved in liquid (from an educational collection). Cortical fracturing and SEM observation of vascular canals surface collagen texture was used to study bone deproteination at scalar temperatures (400-1,200°C) and acid bone decalcification at crescent time intervals. Heating burned and vaporized the organic matrix with shrinkage of the bone specimens as documented by the weight loss and transverse surface morphometry. SEM showed a pattern of aligned spherulites at 400°C which maintained the collagen fibrils layout (like a mineral cast), followed by a spherulites fusion progression with the temperature increments. At 1200°C a crystalline-like structure of tightly-packed trapezohendron units. XRD analysis supported the SEM morphology displaying the complete Debey rings of hydroxyapatite and spotted Debey rings of withlockite. Surface Ca and P elution was documented after 12 hr of exposition to the acid solution by dissolution of spherulites and the whole canal surface decalcified in depth after 15 days by SEM-EDAX analysis. The periodic pattern of collagen fibrils was still evident up to 15 days of decalcification together with fine granular deposits of a not-collagenic proteic material, while after 30 days no period was observed in the decalcified fibrils. Collagen mineral cast at 400°C calcination. Complete crystalline transformation at 1200°C. Up to 15 days of decalcification fibrils period maintained.


Asunto(s)
Matriz Ósea/anatomía & histología , Hueso Cortical/ultraestructura , Fémur/anatomía & histología , Fémur/ultraestructura , Colágeno/metabolismo , Hueso Cortical/irrigación sanguínea , Hueso Cortical/fisiología , Técnica de Descalcificación/métodos , Fémur/irrigación sanguínea , Calor , Humanos , Masculino , Microscopía Electrónica de Rastreo , Minerales/metabolismo
15.
Materials (Basel) ; 12(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461858

RESUMEN

Valorisation of the urban plastic waste in high-quality recyclates is an imperative challenge in the new paradigm of the circular economy. In this scenario, a key role in the improvement of the recycling process is exerted by the optimization of waste sorting. In spite of the enormous developments achieved in the field of automated sorting systems, the quest for the reduction of cross-contamination of incompatible polymers as well as a rapid and punctual sorting of the unmatched polymers has not been sufficiently developed. In this paper, we demonstrate that a miniaturized handheld near-infrared (NIR) spectrometer can be used to successfully fingerprint and classify different plastic polymers. The investigated urban plastic waste comprised polyethylene (PE), polypropylene (PP), poly(vinyl chloride) (PVC), poly(ethylene terephthalate) (PET), and poly(styrene) (PS), collected directly in a recycling plastic waste plant, without any kind of sample washing or treatment. The application of unsupervised and supervised chemometric tools such as principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) on the NIR dataset resulted in a complete classification of the polymer classes. In addition, several kinds of PET (clear, blue, coloured, opaque, and boxes) were correctly classified as PET class, and PE samples with different branching degrees were properly separated.

16.
Materials (Basel) ; 12(17)2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450604

RESUMEN

Mineral carbonation, involving reactions of alkaline earth oxides with CO2, has received great attention, as a potential carbon dioxide sequestration technology. Indeed, once converted into mineral carbonate, CO2 can be permanently stored in an inert phase. Several studies have been focalized to the utilization of industrial waste as a feedstock and the reuse of some by-products as possible materials for the carbonation reactions. In this work municipal solid waste incineration fly ash and other ashes, as bottom ash, coal fly ash, flue gas desulphurization residues, and silica fume, are stabilized by low-cost technologies. In this context, the CO2 is used as a raw material to favor the chemical stabilization of the wastes, by taking advantage of the pH reduction. Four different stabilization treatments at room temperature are performed and the carbonation reaction evaluated for three months. The crystalline calcium carbonate phase was quantified by the Rietveld analysis of X-ray diffraction (XRD) patterns. Results highlight that the proposed stabilization strategy promotes CO2 sequestration, with the formation of different calcium carbonate phases, depending on the wastes. This new sustainable and promising technology can be an alternative to more onerous mineral carbonation processes for the carbon dioxide sequestration.

17.
Front Chem ; 6: 534, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30425984

RESUMEN

The World Health Organization reports that every year several million people die prematurely due to air pollution. Poor air quality is a by-product of unsustainable policies in transportation, energy, industry, and waste management in the world's most crowded cities. Particulate matter (PM) is one of the major element of polluted air. PM can be composed by organic and inorganic species. In particular, heavy metals present in PM include, lead (Pb), mercury (Hg), cadmium, (Cd), zinc (Zn), nickel (Ni), arsenic (As), and molybdenum (Mo). Currently, vegetation is the only existing sustainable method to reduce anthropogenic PM concentrations in urban environments. In particular, the PM-retention ability of vegetation depends on the surface properties, related to the plant species, leaf and branch density, and leaf micromorphology. In this work, a new hybrid material called SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) is proposed for air PM entrapment. Candle burning tests are performed to compare SUNSPACE with Hedera Helix L. leafs with respect to their efficacy of reducing coarse and fine PM. The temporal variation of PM10 and PM2.5 in presence of the trapping materials, shows that Hedera Helix L. surface saturates more rapidly. In addition, the capability of SUNSPACE in ultrafine PM trapping is also demonstrated by using titanium dioxide nanoparticles with 25 nm diameter. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images of SUNSPACE after entrapment tests highlight the presence of collected nanoparticles until to about 0.04 mm in depth from the sample surface. N2 physisorption measurements allow to demonstrate the possibility to SUNSPACE regeneration by washing.

18.
Talanta ; 181: 165-171, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29426496

RESUMEN

In this work, we present the validation of the chemical method for total reflection X-ray fluorescence (TXRF) analysis of water, proposed as a standard to the International Standard Organization. The complete experimental procedure to define the linear calibration range, elements sensitivities, limits of detection and quantification, precision and accuracy is presented for a commercial TXRF spectrometer equipped with Mo X-ray tube. Least squares linear regression, including all statistical tests is performed separately for each element of interest to extract sensitivities. Relative sensitivities with respect to Ga, as internal standard, are calculated. Accuracy and precision of the quantification procedure using Ga as internal standard is evaluated with reference water samples. A detailed discussion on the calibration procedure and the limitation of the use of this method for quantitative analysis of water is presented.

19.
J Aerosol Sci ; 122: 1-10, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30662085

RESUMEN

This work reports on qualitative and semi-quantitative elemental analysis of particulate matter (PM) collected on PTFE membrane filters, for a source apportionment study conducted in Brescia (Italy). Sampling was undertaken in a residential area where an increase in Mn emissions has been highlighted by previous studies. Filters are measured by means of X-ray Fluorescence (XRF) based techniques such as micro-XRF and grazing incidence XRF using synchrotron radiation, Mo or W excitation sources, after applying an automatized sample preparation method. A heterogeneous distribution in PM shape, size and composition was observed, with features typical of anthropogenic sources. XRF measurements performed at various incidence angle, on large areas and different experimental setup were reproducible. The results demonstrate a successful comparison of the various XRF instrumentation, and the decrease in Mn content with the distance away from the identified emission source. This work highlights the potentialities of the presented approach to provide a full quantitative analysis, and ascertain its suitability for providing a direct, fast, simple and sensitive elemental analysis of filters in source apportionment studies and screening purposes.

20.
Environ Sci Pollut Res Int ; 24(17): 14834-14846, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28477251

RESUMEN

This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid waste incineration and coal fly ash), agriculture (rice husk ash), and domestic activities (ash from wood biomass burning in domestic stoves). The main novelty of the paper is the reuse of wood pellet ash, an underestimated environmental problem, by the application of a new technology (COSMOS-RICE) that already involves the reuse of fly ashes from industrial and agricultural origins. The reaction mechanism involves carbonation: this occurs at room temperature and promotes permanent carbon dioxide sequestration. The obtained samples were characterized using XRD and TGA (coupled with mass spectroscopy). This allowed quantification of the mass loss attributed to different calcium carbonate phases. In particular, samples stabilized using wood pellet ash show a weight loss, attributed to the decomposition of carbonates greater than 20%. In view of these results, it is possible to conclude that there are several environmental benefits from wood pellet ash reuse in this way. In particular, using this technology, it is shown that for wood pellet biomass the carbon dioxide conversion can be considered negative.


Asunto(s)
Dióxido de Carbono , Ceniza del Carbón , Incineración , Biomasa , Carbono , Residuos Sólidos , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...